Search results for " 35Q30"
showing 4 items of 4 documents
The Tan 2Θ Theorem in fluid dynamics
2017
We show that the generalized Reynolds number (in fluid dynamics) introduced by Ladyzhenskaya is closely related to the rotation of the positive spectral subspace of the Stokes block-operator in the underlying Hilbert space. We also explicitly evaluate the bottom of the negative spectrum of the Stokes operator and prove a sharp inequality relating the distance from the bottom of its spectrum to the origin and the length of the first positive gap.
The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow
2008
We propose a mathematical derivation of Brinkman's force for a cloud of particles immersed in an incompressible viscous fluid. Specifically, we consider the Stokes or steady Navier-Stokes equations in a bounded domain Omega subset of R-3 for the velocity field u of an incompressible fluid with kinematic viscosity v and density 1. Brinkman's force consists of a source term 6 pi rvj where j is the current density of the particles, and of a friction term 6 pi vpu where rho is the number density of particles. These additional terms in the motion equation for the fluid are obtained from the Stokes or steady Navier-Stokes equations set in Omega minus the disjoint union of N balls of radius epsilo…
On the interior regularity of weak solutions to the 2-D incompressible Euler equations
2016
We study whether some of the non-physical properties observed for weak solutions of the incompressible Euler equations can be ruled out by studying the vorticity formulation. Our main contribution is in developing an interior regularity method in the spirit of De Giorgi–Nash–Moser, showing that local weak solutions are exponentially integrable, uniformly in time, under minimal integrability conditions. This is a Serrin-type interior regularity result $$\begin{aligned} u \in L_\mathrm{loc}^{2+\varepsilon }(\Omega _T) \implies \mathrm{local\ regularity} \end{aligned}$$ for weak solutions in the energy space $$L_t^\infty L_x^2$$ , satisfying appropriate vorticity estimates. We also obtain impr…
On the convergence of fixed point iterations for the moving geometry in a fluid-structure interaction problem
2019
In this paper a fluid-structure interaction problem for the incompressible Newtonian fluid is studied. We prove the convergence of an iterative process with respect to the computational domain geometry. In our previous works on numerical approximation of similar problems we refer this approach as the global iterative method. This iterative approach can be understood as a linearization of the so-called geometric nonlinearity of the underlying model. The proof of the convergence is based on the Banach fixed point argument, where the contractivity of the corresponding mapping is shown due to the continuous dependence of the weak solution on the given domain deformation. This estimate is obtain…